

Alex McCaughran​ H8963254
TM470​​ -​ EMA

07/09/2024

HistoryHike:
Combining Culture, Fitness and

Education to Better Mental Health

Problem Description

We face a deepening mental health crisis, observable through metrics like rising suicide rates (Hedegaard,
2018). Its causes are numerous, however, at its core lies an identifiable lack of exercise (Harris, 2018) and
disconnection from one’s surroundings (Health effects of staying at Home Too Much, no date). A key ICT driver of
this problem is addiction to social media (Ergün et al, 2023) and other harmful digital content, which adversely
affects young people in particular.

This detachment from reality, stemming from detrimental screen habits not only increases likelihood of
depression, but also diminishes their connection to local history and culture, which I personally find to be a
great source of both emotional grounding and intellectual stimulation. Building on my experiences with fitness,
mental health, and history, I propose a solution which replaces unhealthy screen time with healthier habits
through a Software project (my chosen specialisation).

My solution is an Android app, called HistoryHike, that engages users with their surroundings and local history
through exercise. Users select nearby "quests" and are guided through historical stories in the locations they
unfolded. Quests have destinations as objectives, which are completed when reached. After completing a
quest’s set of objectives, users will be rewarded with a digital "artefact”, to provide a sense of achievement.

This gamified exercise method will enrich cultural knowledge, improve fitness, and enhance mental health by
allowing users to learn as they exercise. Studies have shown that exercise apps lead to mental health benefits
(Liu et al., 2023), and educational apps can combat depression and anxiety (Goldberg et al, 2022). Using walking
apps is recommended by relevant organisations with expert knowledge (Humber, 2023) to lower the barrier for
entry to exercise and helping users discover new walking routes..

There are numerous existing fitness apps that aim to improve mental health, but HistoryHike differs in several
ways. Apps like Pokémon GO and Couch to 5K encourage physical activity through gamification, but focus
solely on fitness without incorporating learning. Educational apps, such as Google Arts & Culture targets only
cultural learning, with no emphasis on exercise. My idea is to combine the positive effects of these apps
through promoting exercise and simultaneously educating users about local history, offering a sense of
appreciation towards their surroundings during physical activity and intellectual engagement. This combination
aims to compound the positive effects of exercise and learning, making it a holistic solution to a social
problem.

I expected that, based on prior research mentioned above, users will report positive mental health outcomes
after engaging with the project, due to the exercise and educational aspects of it. These outcomes will be
measured through user-survey self-reporting. Local histories of diverse communities will also be represented,
to ensure their inclusion with the app’s predicted mental health benefits.

1

Goals
Given the nature of the problem, and the solution I aim to create, certain project goals were obtained (Table 1).

Table 1

Goal Method

(1) Create an Android application

Use relevant development tools to create an
easy-to-use app.

Ensure User Interface is intuitive, informative and
easily navigable.

(2) Model the core aspects of this software project
Obtain user stories, document requirements and
draw diagrams to understand the software
components needed for the project to succeed.

(3) Create hierarchical data structures to collect,
store and use quests, objectives and artefacts.

Apply relevant software engineering patterns for
easy development and efficient logical structures.

(4) Allow in-app location tracking and proximity
detection.

Research, obtain and apply an appropriate solution
to track location to quest objectives.

(5) Provide a method of viewing collected artefacts
from completed quests.

Create a separate UI component within the main
app’s view to browse the user’s collected artefacts.

(6) Creation of a backend, allowing persistent
storage of user progress and application data across
compatible devices. Should also allow transmission

of data to users, for example downloading new
quests or images.

Use relevant technologies to store relevant data,
process it and provide remote read/write access to
users.

(7) Collect and use feedback from real users when
appropriate, then build upon it.

Provide a means of feedback collection and engage
in discussions with users to understand how best to
proceed, then use it to iterate the project

(8) Ensure compliance with intellectual
property/copyright law and data privacy regulations,
due to user data usage, such as feedback, account

details and geolocation.

Research data regulations when relevant in the
development process and provide security features
on the backend.

(9) Collect user comments regarding mental health
outcomes, addressing the original problem and the

project as a solution to it.

Gather user opinions on their feelings after using the
app to determine the project’s success as a mental
health intervention/ preventive measure.

2

Account of Related Literature
Throughout the life of my project, a very large number of literature was reviewed and referenced in my works.
Key pieces of this, along with an assessment of its relevancy is found below (Tables 2, 3 & 4).

Table 2

Category Source Credibility Suitability

Problem
Research

NCHS Data Brief, Number
309, June 2018

Government-backed study,
therefore very reliable.

Provides a deep
statistical analysis of
mental health in today’s
youth.

Very important for
understanding the depth
of the problem to be
tackled.

Social Media Addiction and
Poor Mental Health:
Examining the Mediating
Roles of Internet Addiction
and Phubbing

Scientific paper written by
long-time psychological
researchers (primary author
Naif Ergün has been in the
field for 12 years) across
multiple universities. Likely
very reliable.

Investigates the impact
of unhealthy screen
habits on mental health
and their proclivity to
become addictions.

Useful to appreciate why
the problem exists.

The relationship between
physical inactivity and mental
wellbeing: Findings from a
gamification-based
community-wide physical
activity intervention

Study published in a popular
peer-reviewed journal, making
it a highly credible source.

Has been cited 26 times,
indicating high reliability.

Examines the effects of
gamified exercise on
mental well-being over
time.

Provides confirmation of
my approach to tackle
the problem.

The Impact of Technology on
Promoting Physical Activities
and Mental Health: a
Gender-based Study

Research paper authored by
researchers at Zhengzhou
University, lending academic
credibility.

Also published by a reputable,
peer-reviewed journal source,
adding reliability.

Studies the efficacy of
technological
intervention in promoting
physical activity and its
effects on mental health
outcomes.

Suitable, as it examines
the effectiveness of my
own approach.

The Health Benefits of
Walking | BUPA

Fairly credible. Web article
written by the head of
Mental-Wellbeing at a leading
health insurance provider.

Describes the success of
my chosen method of
tackling the problem.

Helpful in corroborating
my method’s use in
tackling the problem.

3

https://www.govinfo.gov/content/pkg/GOVPUB-HE20-PURL-gpo105718/pdf/GOVPUB-HE20-PURL-gpo105718.pdf
https://www.govinfo.gov/content/pkg/GOVPUB-HE20-PURL-gpo105718/pdf/GOVPUB-HE20-PURL-gpo105718.pdf
https://journals.sagepub.com/doi/full/10.1177/00332941231166609
https://journals.sagepub.com/doi/full/10.1177/00332941231166609
https://journals.sagepub.com/doi/full/10.1177/00332941231166609
https://journals.sagepub.com/doi/full/10.1177/00332941231166609
https://journals.sagepub.com/doi/full/10.1177/00332941231166609
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774736/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774736/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774736/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774736/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774736/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774736/
https://bmcpsychology.biomedcentral.com/articles/10.1186/s40359-023-01348-3
https://bmcpsychology.biomedcentral.com/articles/10.1186/s40359-023-01348-3
https://bmcpsychology.biomedcentral.com/articles/10.1186/s40359-023-01348-3
https://bmcpsychology.biomedcentral.com/articles/10.1186/s40359-023-01348-3
https://www.bupa.co.uk/newsroom/ourviews/walking-health
https://www.bupa.co.uk/newsroom/ourviews/walking-health

Table 3

Software
Design

Patterns &
General

Guidance

User Interface Design &
Evaluation of Mobile
Applications

Published in the highly reliable
International Journal of
Computer Science and
Network Security, designating
credibility.

Greatly suitable in
providing general
direction for
implementation of a
useful interface

Android Architecture Patterns
- MVC, MVP, MVVM, MVI,
Clean Architecture

Fairly credible. Web article
written by expert Android
developers published on a
non-scholarly platform.

Very suitable. Describes
ways of writing
maintainable and
performant project code.

Android™ Development
Patterns: Best Practices for
Professional Developers

Learning resource published
by O’Reilly Media who are an
authoritative source in
technical publications.

Highly suitable in guiding
my project’s
development.

Resource
research

Java REST API Frameworks
Written by a Senior Lead
Architect, presumably quite a
reliable source.

Explores different Java
frameworks for backend
API development. Useful
to inform choice of
resource.

What’s the Difference
Between MySQL and
PostgreSQL?

Published by a leading cloud
computing platform, therefore
very credible.

Compares two of the
web’s top RDBMSes.
High suitability in
choosing a resource.

Best Image Loading Libraries
for Android Analyzed

Article written by a frontend
engineer, somewhat reliable.

Compares Android
image loading and
caching libraries, suitable
for resource choice.

Mapbox, OpenStreetMap or
Google Map

Article by a non-technical
CEO, low reliability.

Compares the features
of the most popular free
map APIs. Useful to
choose which resource.

Google Maps vs.
OpenStreetMap

Article written by an
experienced CMS developer,
providing fair credibility.

Compares features and
ease of implementation
for two popular map
APIs. Also useful in
resource choice.

Resource
Usage

Spring Boot Best Practices for
Developers

Article by an experienced
enterprise microservice
researcher, giving fair
credibility.

Describes industry
best-practices for
developing projects with
a chosen resource, very
suitable.

Spring REST

Trusted educational resource
regarding Spring framework
REST APIs cited in academic
writing. High credibility.

Very relevant literature
for developing a Spring
REST API.

4

https://www.researchgate.net/publication/349087972_User_Interface_Design_Evaluation_of_Mobile_Applications
https://www.researchgate.net/publication/349087972_User_Interface_Design_Evaluation_of_Mobile_Applications
https://www.researchgate.net/publication/349087972_User_Interface_Design_Evaluation_of_Mobile_Applications
https://medium.com/droidblogs/android-architecture-patterns-mvc-mvp-mvvm-mvi-clean-architecture-cde8029b8f37
https://medium.com/droidblogs/android-architecture-patterns-mvc-mvp-mvvm-mvi-clean-architecture-cde8029b8f37
https://medium.com/droidblogs/android-architecture-patterns-mvc-mvp-mvvm-mvi-clean-architecture-cde8029b8f37
https://learning-oreilly-com.libezproxy.open.ac.uk/library/view/android-development-patterns/9780133924022/ch01.html
https://learning-oreilly-com.libezproxy.open.ac.uk/library/view/android-development-patterns/9780133924022/ch01.html
https://learning-oreilly-com.libezproxy.open.ac.uk/library/view/android-development-patterns/9780133924022/ch01.html
https://dzone.com/articles/java-rest-api-frameworks-1
https://aws.amazon.com/compare/the-difference-between-mysql-vs-postgresql/
https://aws.amazon.com/compare/the-difference-between-mysql-vs-postgresql/
https://aws.amazon.com/compare/the-difference-between-mysql-vs-postgresql/
https://medium.com/@haxzie/best-image-loading-libraries-for-android-analyzed-36b4781b4f16
https://medium.com/@haxzie/best-image-loading-libraries-for-android-analyzed-36b4781b4f16
https://solidbrain.net/blog/openstreetmap-api-vs-mapbox-vs-google-map-chose-your-map
https://solidbrain.net/blog/openstreetmap-api-vs-mapbox-vs-google-map-chose-your-map
https://www.fireplugins.com/blog/google-maps-vs-openstreetmap
https://www.fireplugins.com/blog/google-maps-vs-openstreetmap
https://medium.com/@raviyasas/spring-boot-best-practices-for-developers-3f3bdffa0090
https://medium.com/@raviyasas/spring-boot-best-practices-for-developers-3f3bdffa0090
https://link.springer.com/book/10.1007/978-1-4842-0823-6

Table 4

Methodology
The Agile Coach |
Atlassian's No-nonsense
Guide to Agile Development

Extensive knowledgebase
created by Atlassian, who are
a leading project management
software company, thus highly
credible.

High suitability in
correctly implementing
my chosen software
development
methodology.

LSEPI

Can I sell images I create with
DALL·E? | Help Center

Written by OpenAI, the
creators of DALL-E. Most
reliable source for
understanding the usage
rights of their AI-generated
images.

Provides clear
information on
intellectual property and
commercial use
restrictions for these
assets. Necessary to
ensure legal compliance.

Licensing – Fonts Knowledge
- Google Fonts

Documentation from the
creators of the fonts used in
my app. Ensured reliability
and accuracy.

Necessary to understand
the legality of the fonts
used in my app.

UK GDPR guidance and
resources | ICO

Official guidelines provided by
the UK's Information
Commissioner's Office (ICO),
the UK data protection
authority. Highly reliable.

Comprehensive
guidance on the legal
obligations for handling
user data under the
GDPR within my project.
Essential to ensure no
legal or ethical
boundaries are crossed.

5

https://www.atlassian.com/agile
https://www.atlassian.com/agile
https://www.atlassian.com/agile
https://help.openai.com/en/articles/6425277-can-i-sell-images-i-create-with-dall-e
https://help.openai.com/en/articles/6425277-can-i-sell-images-i-create-with-dall-e
https://fonts.google.com/knowledge/glossary/licensing
https://fonts.google.com/knowledge/glossary/licensing
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/

Account of Project Work and Its Outcome
Project Planning

Previous studies (TM354 & TM254) taught the importance of correctly planning a project so that its result may
fulfil its stakeholders’ expectations as closely as possible. My HistoryHike project required meticulous planning
to balance technical challenges, user requirements, and mental health outcomes. A primary aspect of this
planning was the selection of an appropriate development methodology.

Software Project Lifecycle Model Selection
Table 5

Model Main Strengths Main Weaknesses Suitability for my
Project

Classic
Waterfall

●​ Clear structure between
stages.

●​ Easy to understand

progression.

●​ Inflexible.
●​ Risk of compounding

delays.
●​ Documentation-heavy.​

Not suitable due to
inflexibility and risk of
overrun during development.

Iterative
Waterfall

●​ Allows feedback and
modifications after each phase.

●​ More flexible than classic

waterfall.

●​ Still inflexible in later stages,
with costly late-stage
changes.

●​ Lengthy iterations.

Low suitability. Though more
flexible than classic
waterfall, this methodology
lacked the full flexibility
needed for a project of this
magnitude while working
full-time.

Prototyping ●​ Rapid development of working
components.

●​ Easy to refine user

requirements.

●​ Risk of getting stuck
prototyping without making
overall progress towards
finishing the project.

●​ Risk of deploying a

non-finished feature due to
the nature of this model.

Medium suitability. Can
quickly create usable
components, but risks
slowing overall progress.

User-Centred
Lifecycle

●​ Prioritises user requirements.

●​ Can reveal new use-cases

through user interaction.

●​ Requires diverse user
groups and significant time
to analyse feedback.

Not suitable. Too
time-consuming to gather
diverse feedback and
analyse user data.

Scrum (Agile) ●​ Highly adaptable.

●​ Reflective, iterative approach

reduces project risks.

●​ Lowers project risks through

breaking development up into
small, manageable chunks
ending with a deliverable.

●​ Requires careful time
management to prevent
scope creep.

●​ Depends on some level of

user feedback throughout
the lifecycle.​

Most suitable. Provides
extreme adaptability, clear
progress tracking, and
manageable levels of user
feedback make it ideal for
my project needs.

6

Given the demands of my schedule, including study, full-time work, and potential unforeseen events,
adaptability was the main deciding factor in selecting a lifecycle model. All models had their merits, however
Scrum (with its iterative nature and focus on flexibility) was the best fit, though I chose to hybridise it with
aspects of the more traditional waterfall models by emphasising documentation early in the development
process. The idea here was that, through appropriate early planning, I would be able to provide an effective
foundation for my project.

Adopting Scrum on my own had its drawbacks. For example, it meant adopting multiple roles: the Product
Owner, who logs and prioritises tasks via a “product backlog”; the Development Team, who executes said
tasks; and the Scrum Master, who eliminates distractions and ensures overall adherence to Scrum practices.
Usually this separation of team member concerns is a benefit to Scrum users, providing effective and focussed
project collaboration, however that was not the case for me as a solo developer. The heavy reliance on regular
feedback was also a hurdle, due to scheduling availability. Finally, Scrum’s iterative nature based on said
feedback can result in scope-creep, as users identify non-functional requirements and additional features
which may not have been previously considered.

With these downsides in mind, Scrum has many benefits which made it suitable for this project. Firstly, it is
highly flexible. This, in part, comes from the product backlog, which dynamically tracks finished work and work
to be done. The backlog is revisited and amended often throughout development, providing this adaptability.
Scrum implements Agile’s core idea of Sprints, whereby the entire Scrum team engages in regularly timed
development sessions, ending with a Sprint Review. During this review, team members visit the product
backlog and plan work upon its items, as well as reflect on previous ones with user feedback. Each Sprint also
finishes by providing a deliverable– something tangible to add to the overall project– providing good tracking
on the work already done and what remains. In my case, I reflected on progress made and tasks to be done at
regularly timed intervals on my own. Sprints were also planned to provide Minimum Viable Products (MVPs) as
deliverables upon completion as often as possible, which was then reviewed by my userbase.

Scrum also implements the idea of a Daily Scrum (Rehkopf, Scrum Sprints: Everything you need to know). With
this, team members discuss work for the day ahead, what may hinder them and how to overcome this. For my
project, this daily reflection was done alone and involved heavy reflection into progress on backlog tasks, on a
more modular level than Sprint Reviews.

Due to the above, I found that adopting a Scrum approach is clearly best. A key characteristic of Scrum, as an
implementation of Agile, is a focus on “Working software over comprehensive documentation”. While I (for the
most part) adopted Scrum principles, I also generated a large amount of initial structural documentation prior
to creating my software, to guide me through the development process. Thus, my approach is best described
as “Scrum-like,” through applying Agile principles but with necessary adjustments for my situation.

7

Software Design Pattern
After deciding on a lifecycle model for my project, the next step was to choose an appropriate software design
pattern with which to create my application. According to Phil Dutson’s work, the Android platform is
particularly well-suited to a Model-View-Controller (MVC) approach (Dutson, 2016), whereby an application is
divided into three core components:

●​ Model: Manages the data and business logic of the application, independent of the UI.

●​ View: Handles the presentation layer, displaying data and sending user actions to the controller.

●​ Controller: Acts as the intermediary, managing interactions between the View and the Model, handling
user input, and updating the View with new data.

This separation ensures that each component focuses on its specific responsibility, simplifying development
and maintenance by isolating changes to one part of the codebase. There exists, however, other design
patterns which also promote maintenance through separation of concerns and clearly defining system
architectures. Some of these include:

●​ Model-View-Presenter (MVP): Similar to MVC, except the Presenter takes on a more active role in
managing the UI logic. The View is passive and simply reflects what the Presenter tells it. This pattern
requires more development time, due to increased complexity and adding a whole new layer of
abstraction through the introduction of a presenter layer (Dashwave, 2023). Because of this, MVP was
not well-suited to my project.

●​ Model-View-ViewModel (MVVM): In this pattern, the ViewModel handles most of the logic and interacts

directly with the Model, exposing properties to the View. MVVM can be used with Android’s Data
Binding library, making the UI automatically update in response to data changes (MVVM (Model View
Viewmodel) architecture pattern in Android 2022). This pattern is most well-suited for software systems
which deal with large amounts of data (Dashwave, 2023) and requires the generation of large amounts of
boilerplate code before real development can begin- both of these qualities made this pattern less ideal
for my project, which aimed for rapid development and maintainability through simplicity.

●​ Model-View-Intent (MVI): This is a more reactive, Android-specific approach, which treats the user

interface as a function of the application’s state. User interactions are modelled as Intents, which
trigger state changes, making this pattern suitable for apps that require a strong flow of user interaction
and state management, as mine is. This, however, comes at the cost of much added complexity and
verbosity to the overall codebase (Gazzah, 2020).

Considering this, I chose MVC for my project due to its simplicity and clear separation of concerns, making it
an ideal fit for the structure of my app, where user inputs (such as navigating through quests and collecting
artefacts) need to interact with data and be reflected in the UI, without sizable data processing or introducing
unnecessary complexity.

8

Resource Research
My studies relating to software projects (TM354 & TM254) emphasised how correctly identifying resources and
risks in reference to achieving a project’s goals are often the guiding success factor. With this in mind, some
research to select necessary resources was required, in order to complete my project’s goals. This was
undertaken at the beginning of my project, with some of this research process highlighted below.

I already had extensive prior experience with many appropriate resources, so their suitability for this project
was already known. Examples of such resources are:

●​ Git.
○​ A Version Control System (VCS) essential for managing a project of this magnitude. Git offers

complex project management through iteration and branching, providing crucial flexibility for my
Scrum-like approach. I have extensive experience with GitHub, where my project repository is
hosted.

●​ Canva.

○​ Interface prototyping is necessary for a mobile application with such a rich feature set as this
(Samrgandi, 2021). I decided to use Canva, a powerful, free design tool I have used many times
before.

●​ Spring Boot.

○​ Regarding a backend web-API framework, I knew that Java would be my language of choice. It
is the one which I have developed most of my University work and personal projects with,
however how to go about creating the API was an important decision. To speed up
development, there are many ready-to-use frameworks which are available. This powerful Java
framework streamlines building a fully-featured REST API with integrated security features,
essential for transferring and processing application data while considering LSEPI concerns like
data privacy and legal compliance. Spring Boot excels in automating configuration tasks,
enabling rapid deployment of secure and capable APIs (García, 2023). Given my prior
experience with this framework and through consulting some of my chosen literature, I was
confident in its suitability for my project.

●​ Physical Android device.

○​ Due to geolocation features, real devices were necessary for realistic testing. I have multiple at
my disposal, as do my users.

Regarding the resources I needed guidance with, I consulted development forums and expert articles, to get
advice from professionals who solve similar problems as part of their role. A primary decision to make was a
choice of database system. In my professional and academic life, I have used a range of database
technologies (such as MongoDB, SQLite, MSSQL & PostgreSQL). Due to this, I was unsure how best to
proceed, but I knew that I at least needed a relational database, to appropriately represent the hierarchical
relationship between quests and objectives. To decide, I considered Table 6 (on the next page).

9

Table 6

PostgreSQL MySQL

Advanced features with feature-rich, but
complex, syntax.

#1 choice for enterprise applications worldwide,
such as Shopify and Uber (PostgreSQL vs mysql -
difference between relational database management
systems (RDBMS) - AWS, no date).

Faster than MySQL, with 62.5% less time per
query, however both are under 50ms when
tested (Musgrave, 2024).

Highly scalable and reliable (PostgreSQL vs mysql
- difference between relational database management
systems (RDBMS) - AWS, no date).

Outperforms MySQL with write-heavy workloads. Outperforms PostgreSQL with read-heavy
workloads.

Complex learning curve (PostgreSQL vs mysql -
difference between relational database management
systems (RDBMS) - AWS, no date)

Simple installation and deployment, compared to
PostgreSQL

Given Table 6, I decided MySQL was most suitable. While PostGres (pSQL) is more performant, my
application’s database features were relatively simple, negating any performance observations between the
two. pSQL is also very powerful and versatile, however this was irrelevant in my case, due to the simple
backend features mentioned previously. MySQL is noted for its ease-of-use and simplicity in installation, which
I deem most important. It also outperforms pSQL in terms of reads, which is the most used transaction in my
project. I also already had some experience using MySQL, giving me a headstart in using this technology.
Therefore, MySQL appeared to be the best choice.

Another careful consideration to make was between the two leading map APIs, OpenStreetMaps (OSM) and
Google Maps, to display user and quest/objective locations. As both of these APIs are free at my predicted
usage level and provide the ability to mark locations, other factors were more important. A key element of this
decision was whichever API had more available documentation, usage and discussion online, which Google
Maps had more of each. Another was accuracy, which Google Maps beat OSM in, with 99% worldwide
coverage (Dovhal, 2023). One advantage to OSM is that their maps and location pins are highly customisable
(Google Maps vs. OpenStreetMap, 2023), but this is also a downside in my situation as it requires much
configuration before use, impeding project progress. I found that Google Maps’ default look certainly sufficed.
For these reasons, I chose Google Maps.

A final technical resource decision was how best to implement Geolocation, a task I had attempted previously
within an Android context. For this, I mainly considered: ease of use, accuracy and tracking update frequency.
In my research, I found that Google Play Services FusedLocationprovider API was the best choice, in all three
categories, as explored below.

For best accuracy, this API provides location updates using a combination of available GPS, Wi-fi and mobile
network data (Munusamy, 2023). Providing appropriate update frequency is achieved through simply configuring
a single parameter within this API. Finally, ease of use is incredibly accessible. One must simply add Google
Play Services as an Android Studio dependency, add the appropriate permission request to my app then
define a LocationCallback() into an Android activity or instantiate a FusedLocationProviderClient object and
call its getLastLocation() (Fused Location Provider API | Google For Developers, no date). By comparison, the other
major Android geolocation method is LocationManager, which requires a far more complex set-up process and
only uses GPS by default, with a more difficult to use interface. The only advantage LocationManager has is
that it does not require Google Play Services (LocationManager | Android Developers, no date) and can therefore
run on all Android devices, however I intended to eventually distribute my app on the Play Store, so this
advantage was irrelevant. Also, during development, my application’s installation file (.apk) was directly
distributed to users, also negating the need to avoid Google Play Services.

10

Resources Used
After performing the above research, the below resources were identified– along with how they were used and
acquired.

Software Resources:

●​ Android Studio, with Android and Java SDKs, to develop the application front-end.
○​ Free download.

●​ Cloud server, for hosting a Web API backend.
○​ Already owned a cloud hosting package for personal projects containing a Virtual Private Server

(VPS).
●​ Cloud MySQL database service, to store user details and app data.

○​ Included in my hosting package.
●​ Design prototyping tool, to design UI.

○​ Free online tool: Canva.
●​ Software board, to facilitate the product backlog.

○​ Free online tool: Miro.
●​ JUnit, to test project features.

○​ Used JUnit as it is a fully featured, industry-standard Java unit testing library, integrated with
Android Studio.

●​ Geolocation service, to provide the core function of the project.
○​ Implemented the Google Play Services built-in FusedLocationProvider class.

●​ Appropriate backend API framework or language.
○​ Used Spring Boot, due to its capabilities, ease of configuration (García, 2023) and previous

experience with it.
●​ Map provider to display user location and quest objectives.

○​ Obtained a free key and integrated Google Maps API.
●​ Git, with GitHub, to: document/record progress; and provide a means of reverting to previous versions.

○​ Used a GitHub account and valid SSH keys to access remote repositories.
●​ Google Play Console account, to allow distribution of my Android app.

○​ Created a Play Console account and can later pay the $25 fee to publish my project once
LSEPI is fully addressed (see Table 16 on page 39) as the Play Store is the easiest for
subsequent users to access and install apps from.

Physical Resources:
●​ External stakeholders (users) for feedback and testing.

○​ Obtained through personal relationships.
●​ Physical Android device, to test and use the app at all stages.

○​ Already owned two Android devices and all of my users have Android devices on Android 13+.

11

Project Completion Risks

An important step to success in managing an IT project is risk identification and mitigation, as all of my related
Open University studies have taught. A number of risks were initially identified at the beginning of project
development, once resource research was underway. They are found below, along with how they could have
been, or were, mitigated.

●​ Underestimation of time needed to complete tasks or learn/improve skills.
○​ Medium likelihood, high impact.

■​ Mitigated by revising and/or decreasing project scope. This will be reviewed during the
regular daily scrums and at the end of sprints.

●​ Low user availability when required.

○​ Low likelihood, low impact.
■​ Mitigated by reaching out to others to provide feedback.

●​ Overestimating my availability.

○​ Low likelihood, high impact.
■​ Mitigated by revising the project schedule to accommodate for delays during scrums and

at the end of Sprints.

●​ Project management issues, such as scope creep:
○​ Medium likelihood, medium impact.

■​ Mitigated by revising and/or decreasing project scope at the end of each Sprint.

●​ Legal and Intellectual Property Infringement (on artefacts used):
○​ Low likelihood, high impact.

■​ Mitigated by reviewing that artefacts I use are not copyrighted, or are made legally
distinct/ declared as “inspired by” the real artefact.

●​ Loss of work undertaken (for example, disk failure on development computers):

○​ Low likelihood, high impact.
■​ Mitigated by regular use of version control.

●​ Low suitability for tools/resources chosen:

○​ Medium likelihood, high impact.
■​ Mitigated by reviewing progress made and problems encountered throughout the project

lifecycle. Should issues be discovered, they’ll be addressed by reading other suitable
tools.

12

Major Tasks and Subtasks, With Schedule

An important step to success in most software development projects is having a clearly defined work schedule,
with tasks set at an appropriately granular level. The creation of such a schedule was crucial for me, as
planning project development alongside full-time work and other life commitments is a difficult task. By defining
such a schedule containing tasks and subtasks, I was able to monitor progress effectively as I moved through
my project.

In Scrum, task completion is assessed at the end of sprints. My sprints ran every 14 days, with the task
marking Sprint completion highlighted like this. MVP creation, highlighted like this, usually occurred at the
end of a Sprint. To stay Agile, there was at least one MVP per development phase, allowing iterative
development upon user feedback (Samrgandi, 2021). Product-related major tasks were colour-coded between
my product backlog and schedule, to track progress at a glance.

Since my approach was Scrum-like (rather than concrete Scrum), I deemed the creation of a general project
schedule necessary for success. Usually, due to the Agile tenet of “Responding to change over following a
plan”, such a schedule may be amorphous and loose overall (Drumond, no date). This was not totally the case
for me and it was only in very extreme circumstances when I deviated too far from the schedule, such as when
I identified the need for MVP creation and then swapped two of my development phases. Due to this
Scrum-like model I adopted, some sprints ended early throughout development and some later, depending on
product backlog jobs completion and user feedback to work on. This emphasises my approach’s flexibility and
its suitability to both my study situation and specific project.

To track which goal each major task addressed, it was noted at each major task the goal which it contributes
towards solving. By the end of my project’s development, all project goals had been addressed.

13

Table 7

First Phase

Major Task Subtasks Time Per Subtask
(in days)

Subtask
Start Date

System
Modelling

(Goals 2 & 3)

- Create user stories

- Formally describe system requirements

- Create product backlog, a key feature of Scrum
project management (Rehkopf, no date).

- Create an analysis model detailing the classes
within the system

- Design the overall user interface

2

2

1

3

4

16/02/2024

18/02/2024

20/02/2024

21/02/2024

24/02/2024

Total 12 Days Ends On 28/02/2024

Project
Setup

(Goal 1)

- Install Android Studio.

- Create a new Java Android project.

- Set up a version control system on the project.

1/3

1/3

1/3

28/02/2024

28/02/2024

28/02/2024

Total 1 Day Ends On 29/02/2024

Google Maps
And

Geolocation

(Goal 4)

- Obtain Google Maps API key.

- Add Google Maps to the project.

- Implement a basic initial map view displaying
the user's current location.

- Test the map and geolocation on a real Android
device, then resolve any issues identified.

1

2

3

5

29/02/2024

01/03/2024

03/03/2024

06/03/2024

Total 11 Days Ends On 11/03/2024

TM470
TMA01

- Finalise TMA01. 5 11/03/2024

Total 5 Day Ends On 16/03/2024

Estimated Time: 4 Weeks, 1 day

Small Break - Complete other modules’ remaining demands
(TMAs).

14 18/03/2024

14

Table 8

Second Phase

Final App
Analysis

(Goals 2 & 3)

- Create state diagrams

- Review state diagrams, analysis model and product
backlog.

- Make changes if required.

2

1

1

01/04/2024

03/04/2024

04/04/2024

Total 6 Days Ends On 05/04/2024

Implement
Main UI and
Game Logic

(Goals 2, 3, 4

& 5)

- Implement the map interface with a quest navigation menu

- Begin implementing the analysis diagram, by creating Java
classes in an MVC pattern, with the fields as specified

- Implement main game Model object methods (such as
populating quests’ objectives or completing an objective).

- Implement main game View object methods (for instance,
populating the map with objective markers).

- Implement main game Controller methods (for example,
checking user proximity from location).

5

2

3

5

5

05/04/2024

10/04/2024

12/04/2024

17/04/2024

22/04/2024

Total 6 Days Ends On 27/04/2024

Test Game
Logic

(Goals 3, 4 &

5)

- Unit test core model methods, resolving identified issues

- Unit test core controller methods, resolving identified
issues

- Unit test view methods methods, resolving identified issues

- Test Application on real device.

4

4

4

2

27/04/2024

01/05/2024

05/05/2024

09/05/2024

Total 6 Days Ends On 11/05/2024

Small Break - Write and finalise another module’s EMA. 10 11/05/2024

TM470
TMA02

- Finalise TMA02. 7 21/05/2024

Total 17 Days Ends On 28/05/2024

Estimated Time: 7 Weeks, 6 days

Small Break - Complete other modules’ final demands (Revision and
exam).

14 28/05/2024

15

Table 9

Third Phase

Implement
artefact

collection

(Goals 3, 4
& 5)

- Implement MVC approach to artefact collection and storage.

- Create a view to browse earned artefacts stored.

- Test all app functions on a real device (At this point, the app
stores and processes all data locally).

- Resolve any issues identified.

4

3

4

3

11/06/2024

15/06/2024

18/06/2024

22/06/2024

Total 14 Days Ends On 25/06/2024

Small Break - Go on holiday to Spain 5 25/06/2024

Cloud
Database

Setup

(Goal 6)

- Design database schema for backend from the analysis
model.

- Deploy the database in-cloud.

- Populate database with initial application dataset.

- Test the live database behaves as expected with manual
queries. Amend the schema if otherwise.

2

2

1

4

30/06/2024

02/07/2024

04/07/2024

05/07/2024

Total 9 Days Ends On 09/07/2024

Small Break - Visit and stay with family for a while. 3 09/07/2024

Database
CRUD API

(Goals 6)

- Set up Spring boot Project and configure database access

- Create appropriate Object-Relational-Modelling

- Create CRUD operations to interact with database

- Create API Endpoints for front-end access to these
operations

- Unit test the API locally and resolve any issues.

1

1

2

1

3

12/07/2024

13/07/2024

14/07/2024

16/07/2024

17/07/2024

Total 9 Days Ends On 20/07/2024

TM470
TMA03

- Finalise TMA03. 7 20/07/2024

Total 12 Days Ends On 27/07/2024

Estimated Time: 6 Weeks, 2 days

16

Table 10

Final Phase

Live API

(Goals 6)

- Deploy the API in-cloud.

- Test the live API, fix any deployment related issues and
redeploy, if necessary.

1

2

27/07/2024

28/07/2024

Total 5 Days Ends On 30/07/2024

API Integration
(Goals 1 & 6)

- Create HTTP app methods to interact with the REST API

- Integrate these with the app’s existing functions to
populate app data from the remote server

2

3

30/07/2024

01/08/2024

Total 6 Days Ends On 04/08/2024

Secure the
REST API

(Goal 6)

- Implement basic JWT authentication.

- Deploy and unit test the API in-cloud.

- Resolve any deployment/development issues as
discovered.

2

2

5

04/08/2024

06/08/2024

08/08/2024

Total 11 Days Ends On 11/08/2024

In-app
Authentication

(Goal 8)

- Create a login screen layout, following initial design
specification.

- Implement registration/authentication methods following
MVC principles.

2

4

13/08/2024

15/08/2024

Total 6 Days Ends On 02/09/2024

Integration
Testing

- Test all aspects of the app, frontend and backend,
together in conjunction

- Resolve any identified issues.

5

6

20/08/2024

26/08/2024

TM470 TMA03 - Finalise TMA03. 7 02/09/2024

Total 12 Days Ends On 16/09/2024

Estimated Time: 6 Weeks, 2 days

17

User Stories
To obtain initial system requirements in a Scrum manner, I discussed expectations with my users (Appendix
A), contributing towards goal 7 from Table 1, page 2. Taking LSEPI guidelines into consideration, all users’
anonymity was preserved and informed consent was gained for participation (Appendix B), after being briefed
on the project’s purpose. All users were treated with due respect and valid understanding of their expectations
was confirmed before being translated into succinct user stories.

These discussions are summarised, as user stories:

Figure 1 - User stories

18

Requirement Elicitation

TM352 teaches that, to successfully enact a software solution, aspects of the solution must be broken down
into requirements (both functional and non-functional). Requirements can be considered the “how” to the
“what” set by a project’s goals, meaning that requirements should be specific in describing by what means a
project goal is met. By formally stating these, a software project can become focussed on delivering its
stakeholders’ expectations accurately.

Translating my abstract Agile/Scrum user stories into more formal requirements, I found the below, which
assists in meeting goal 2.

Functional Requirements
Table 11

Functional
Requirement

Number

Functional Requirement Name Functional Requirement Description

FR1 User Account Management Users shall be able to register, log in to and manage their own
accounts.

FR2 Mapping Users should be able to see their surroundings as a manoeuvrable,
two-dimensional map..

FR3 Geolocation The user’s position will be superimposed onto the map (FR2),
allowing them to navigate towards certain locations.

FR4 Quests Users will be able to browse nearby historical events, select one,
then navigate through a set of points on the map (FR2) to reach
certain objectives or destinations, before completing their quest.

FR5 Artefact Collection Users shall be rewarded upon completion of the quests from FR4 by
receiving “artefacts” representing their achievement, modelled after
historical events. They can then view these in their “museum”, which

is a collection of artefacts.

FR6 Compatibility Users should be able to use this app on a range of Android mobile
devices, not just the newest OS version.

19

Non-functional Requirements

Upon my project’s initial conception, I had planned to introduce Augmented Reality capabilities to the app, to
provide a further sense of achievement for my users upon obtaining a historical artefact. This, however, was
discussed with users (Appendix C) upon the second development phase of my schedule and this
non-functional requirement was deemed unnecessary for my project timeline.

The ability to remove such an early conceived feature is testament to my methodology’s aptness for
developing this project. The flexibility of my Scrum-like approach means that this could be revisited and added
some time after EMA submission, following further user discussions and iterative development.

Table 12

Non-Functional
Requirement

Number

Non-Functional Requirement
Name

Non-Functional Requirement Description

NFR1 AR (Augmented Reality)
Capabilities

Users should be able to see artefacts in AR, for a heightened sense
of achievement.

NFR2 Usability Users should be able to browse all app components easily.

NFR3 Performance The app should not struggle to run smoothly on supported devices.

NFR4 Offline Access Users should be able to continue a quest without an active internet
connection

NFR5 User Data Compliance User data should be stored and used to comply with data privacy
laws, especially location data.

NFR6 Historical Accuracy Historical data should be as accurate as possible.

NFR7 Intellectual Property
Compliance

Since there may be ownership involved with certain historical items,
care should be taken to ensure no copyright breaches take place.

NFR8 Cultural Diversity The histories given should reflect local communities of all forms.

NFR9 Enjoyability Users should self-report that: they enjoyed using the app; they
experienced encouragement to exercise and learn; they
experienced improved mental health results from this.

20

Product Backlog

In Scrum project management, product backlogs outline individual tasks and subtasks that are complete, in
progress, or awaiting action (Rehkopf, no date). This organisation technique has allowed me to dynamically
adjust and allocate tasks as needed throughout development. My approach, although Scrum-like, follows a
well-defined project schedule, so my backlog has remained largely static during development phases, with
only minor changes in which subtasks shall be completed before others.

However, using such a backlog enabled adaptability, allowing task engagement outside of my defined
schedule, if necessary (such as when a task took longer and was not a prerequisite for others).

Figure 2 - Working product backlog

Figure 2 contains a snippet of my backlog during the final development phase, showing the categories
denoting a backlog item’s status.

All backlog cards map directly to a subtask on my schedule and were colour-coded, labelled and categorised
according to their associated major task.

21

System Modelling
Analysis Model

TM352 analyses the utility in system modelling, an aspect of more traditional, waterfall-oriented lifecycle
models. The most core of these system modelling tasks is the creation of an Analysis Model, where the
classes and objects of a system are described alongside the interactions between them. Most Scrum projects
neglect this stage, as it emphasises “Working software over comprehensive documentation” and “Responding
to change over following a plan” (Rehkopf, no date), however I decided that this was a necessary step for my
project’s development to succeed. I believe that, through providing such a concrete specification, I was able to
guide my project’s development successfully.

Below (Figure 3) is my final analysis model, created according to my initial schedule estimate and later
amended upon future Sprint completion with time availability due to underestimation of certain tasks’ time
requirements. This analysis model underwent multiple iterations from its initial conception upon Sprint reviews.
For example: as previously described, augmented reality capabilities were dropped from artefact viewing;
association multiplicity between User and Map were amended from 0..* - 0..1, as clearly each user can be
associated with one and only one map, not 0 or one; a resourceURL field was added to Artefact to provide a
way of retrieving the resource for an Artefact, that is to actually access the artefact asset image.

Figure 3 - Analysis Model

22

TM352’s studies showed that loops in analysis model associations can lead to infinite loops between
objects/classes during implementation, causing crashing or degraded software performance. Addressing these
issues clarifies the system design, maintains state consistency, and facilitates testing. To break my loops, I
defined the below constraints:

●​ A User may have only one active Quest at any time. When startQuest() is run, any inactive quest
objects are destroyed. Inactive quests are recreated when cancelQuest() is run on the active quest.

●​ A User's Museum may only contain Artefacts from completed Quests. Users cannot possess an

Artefact unless it has been earned through Quest completion.

23

State Diagrams

To conceptualise my application's control flows, I created state diagrams for two core components: Objectives
and Quests. These diagrams depict the lifecycle of the application's most important features, including state
descriptions and transitions managed by methods.

●​ Objectives:

Objective objects are fairly simple, with a fixed latitude and longitude
location (not shown in figure) and a completion status. As objectives’
location constants cannot be amended after creation, this completion
status completely encapsulates an objective’s state and is therefore the
only attribute modelled here. It is managed through a single method in a
linear way, an objective cannot be incomplete after it has been
completed– that is, a user cannot un-visit a location.

Figure 4 - Objective class state diagram

●​ And Quests:

Quests are slightly more complex, as they have four
states that follow a logical flow. A quest begins in a
not yet attempted state, then moves to an in-progress
state. Finally, a quest can either be completed (once
all its constituent objectives are in the Completed
status) or cancelled.

Figure 5 - Quest class state diagram

24

To ensure development of a robust, maintainable and versatile system, software engineers follow SOLID
principles when designing and implementing a project (as all my programming-related University modules
have taught). I respected these standards when conceptualising and developing my system in the following
ways (García, 2023):

●​ S: Single Responsibility Principle
○​ Each class in the system has one clear responsibility. For example, the Quest class handles the

logic specific to quests, while the Artefact class manages artefact-related functionality. This
makes the system easier to maintain and extend.

●​ O: Open-Closed Principle

○​ The system’s core components, such as Quests and Objectives, are designed to be open for
extension but closed for modification. This ensures new quest types or objectives can be added
without breaking existing code, promoting stability while adding new features between
Sprints/development phases.

●​ L: Liskov Substitution Principle

○​ Subtypes, such as specialised quest types, could replace their base types (Quest) without
affecting the overall system behaviour. This ensures that the system remains flexible and
interchangeable. Currently, there exists only one type of quest, however the system has been
designed in such a way that permits for object inheritance. This allows the possibility of
subclasses of existing objects to exist in future iterations, post-EMA submission.

●​ I: Interface Segregation Principle

○​ All system interfaces were designed to be specific to the needs of classes which interact with
them. For example, if a View only needs to display artefacts, it doesn’t depend on methods
related to quests or objectives. This keeps my system efficient and maintainable through loose
coupling.

●​ D: Dependency Inversion Principle

○​ High-level modules, like the Controller in MVC, depend on abstractions (interfaces) rather than
concrete classes. This makes the system more flexible and adaptable to changes, such as
switching how artefact data is retrieved without altering the controller logic.

25

User Interface Design

When designing a complex application such as this, the views and interactions a user has with it are very
important, and so I have used the paper "User Interface Design & Evaluation of Mobile Applications" by Najwa
Samrgandi to guide my presentation development.

A formative idea from Samrgandi’s paper is the emphasis on User-Centred Design (UCD), which suggests that
every element in the application should be tailored to enhance the user's experience, ensuring simplicity and
clarity in the interface design ​(Samrgandi, 2021). By adopting this approach, I have ensured that HistoryHike’s
UI maintains intuitive and logical, including labels and icons where appropriate. Samrgandi also advocates for
iterative design, where user feedback plays a critical role in refining the UI. This is a core idea of my lifecycle
model and was particularly useful during my design and development of the project’s UI, as I integrated real
user feedback to improve design clarity and deliver value to users. I also used this feedback to incorporate
another of Samrgandi’s techniques, cognitive walkthroughs (Appendix D), discussed later.

In meeting FR1 from Table 11, I designed the account-related UI screens (Figure 6).

Figure 6 - Account UI screen designs

The third screen, showing account editing, is only accessible once logged in to a valid, registered account on
the app.

26

In Figure 7, you can see some interfaces for my applications main functions, working towards the functional
requirements from Table 11 as annotated.

Figure 7 - Quest/artefact-related UI screen designs

A core principle of UCD, and Scrum, is user interaction throughout development, to obtain and take on board their
feedback with regards to the interactions with the application, which is fundamental to an application’s success
(Samrgandi, 2021). Taking an approach as Samrgandi advises, I took feedback from 4 of my users on the above
design to iterate upon, contributing to project goal 7 from Table 1 (page 2). These were then incorporated into the
final, finished product. A summary of this below, in Table 13, alongside the agreed solution to issues raised:

Table 13

Feedback Solution

Seeing the distance from a quest in the quest list
is unnecessary and not the best way to browse
which is nearest. Lacks context from surroundings.

Implement a clickable interface on quest items in this menu to
take the map to the quest’s starting location (and other
objectives when currently doing a quest).

It’s unclear, when just looking at the design,
exactly how everything works. I might need to
explore how the app works when first using it.

Perform cognitive walkthroughs (Samrgandi, 2021), whereby
users and I run the app with the implemented design and
discuss it together (Appendix D).

Artefact icons take up a large amount of screen
space.

Lower the size of artefact icons when viewed as a collection and
provide a means of viewing it as a larger image.

27

Project Development
MVC Implementation

In its current stage, my application classes looked as shown
in Figure 8. Concerns between application and display logic
have been separated, as recommended by industry
best-practices (Dutson, 2016).

This class structure demonstrates adherence to SOLID
principles through ensuring classes have a single,
clearly-defined responsibility (García, 2023).

Within my approach:
Model classes hold and transform application data, View
classes contain and display presentation logic and Controller
classes provide user interaction with the underlying model
and update View classes.

Figure 8 - Android app project structure

Phil Dutson‘s work (Dutson, 2016), advises adhering to the pattern in Figure 9 with Android development. I
ensured my object interactions follow this pattern. This ensures that the Interface Segregation Principle of the
SOLID principles are followed, clearly separating concerns, increasing modularity, and improving
maintainability/readability.

Figure 9 - MVC Interaction diagram (Dutson, 2016)

28

Unit Testing
In all of my previous studies, I have researched the importance of testing software solutions. Doing so
ensures: proper functionality (in line with expected requirements); quality solutions; robustness; and facilitates
maintenance. With this in mind, I tested my application’s various functions to verify its utility.

Using JUnit, Android
Studio’s
industry-standard built-in
unit testing library, I ran
unit tests against my
MVC app classes. I first
created test classes
populated with dummy
data, such as the setup
for Quest unit tests in
Figure 10.

Figure 10 - The steps of setting up a quest object in-app (with test data).

I then ran JUnit assertions (Figure 11)
against all methods to manually check
that they output the expected results.

These same tests were performed
against live data from the API during later
development phases, ensuring

Figure 11 - Simple JUnit test, checking that quests are incrementing their objectives as expected.

After testing all relevant classes, I reached Figure 12, confirming that my classes are implemented correctly,
following my system modelling work.

Figure 12 - Successful build, with no failed tests flagged.

29

Initial Testing On Real Device (Game Logic)
After successful unit testing, my app was then tested on a real device (Figure 13) by my users.

Firstly, I populated the application’s QuestController with a test quest, consisting of only a single objective and
an artefact reward.

Step 1 shows the user near the quest's starting point
(also its only objective).

At Step 2, the user selects the quest. When “accept” is
tapped, the quest begins, starting a state change as
described in my state diagram.

After the next location update, the View changes to Step
3, showing a DALL·E generated image (royalty-free) of
Scottish warriors. The user can cancel the current quest,
changing its state again (via the top-left cancel quest
button).

After completing the final objective, the artefact is
gained, in Step 4. This artefact is another DALL-E
generated image (a burger).

A frequent piece of user feedback at this stage was to
display the artefact’s description when it is earned, to
give context and an explanation as to what they are.
Another was to provide a means of navigating back to a
user’s location when the map is moved off of it. A final
was to increase the proximity to an objective required to
complete it- which was set (arbitrarily) at 2 metres until
this point.

These features were promptly added to my product
backlog and later implemented into the final product.

Figure 13 - Application running on real device

30

Backend
Database

In designing a suitable database schema, it’s important to ensure all functional requirements can be
addressed. My design implemented below allows for all relevant application details to persist on the backend,
allowing for game data to be updated without requiring users to install application updates.

Through providing a user table, user’s details are stored allowing them to log in and access their personal
game data, addressing goal 6. By only storing hashed passwords in the database, and processing the hashing
solely at runtime within my REST API, user confidentiality/privacy is maintained. Passwords are combined with
a random salt when hashing, to further increase security. User location details are also never stored, just
whether or not they have completed a quest. This addresses one of my LSEPI concerns (Table 16, page 40).

Figure 14 - HistoryHike database schema

After populating this database with dummy data, it was deployed to a cloud-hosting service (as mentioned in
my resources section), and could be queried remotely with the database admin credentials. I had issues in
doing this, which will be addressed later in the Schedule Adherence section (within Project Management
Review).

31

REST API

To provide data-related functionality to my application, development of a REST API was identified as
necessary early in my project’s planning. I developed this with Spring Boot, a Java framework specialising in
applications of this type.

In creating and maintaining this API, I created modular classes to handle data retrieval/writing (repositories),
functionality (controllers) and data modelling (models), as recommended by industry professionals (Gaur, 2024).

All aspects of my database schema, and
therefore my analysis model, have been created
to provide full functionality.

Through my studies in web development
(TT284 & TM352), various forms of
authentication were explored, including OAuth,
simple HTTP authentication and JSON Web
Tokens (JWTs). In these studies, JWT was
frequently discussed as a robust method of
providing security through simple
implementation.

JWTs encode: a user’s identity (in my case, their
email address); a predefined security key, to
prove the JWt was issued authentically; and an
expiration time, which I set to 24 hours after the
last API request is made.

My REST API handles authentication through
JWT (JSON Web Tokens), providing good user
security. User’s passwords are hashed and
salted prior to being written to the database, as
mentioned previously, preserving the core
security concepts of confidentiality, integrity and
availability (What is Information Security: Policy,
Principles & Threats: Imperva, no date).

Figure 15 - Spring Boot REST API project structure

These API functions (along with all others) were tested using JUnit, as Figure 16 shows.

Figure 16 - Spring Boot REST API JUnit tests

This API was then deployed to the same cloud-hosting as my database and could then also be tested through
simple HTTP requests to the API’s endpoints, both through a browser and Postman (an API testing suite). SSL
is included in my hosting package so I configured my API to use HTTPS encryption, obfuscating sensitive user
data in transit, acknowledging LSEPI privacy and legal concerns.

32

Controllers should be kept lean with Spring Boot though focussing only on handling HTTP requests (Yasas,
2022), not business logic, while repositories should focus on database operations. I have ensured that this
principle is in place throughout my API (as Figure 17 shows), maintaining readability and separation of
concerns. This is also in keeping with the Single Responsibility and Interface Segregation principles of SOLID.

Figure 17 - UserController class methods from Spring Boot REST API

Catching errors and handling them appropriately is crucial in any software application, particularly when
dealing with user input or authentication. With JWT-based authentication, handling exceptions such as missing
or invalid tokens and database-related errors is essential to ensure that the system remains reliable and
secure. For Spring REST APIs, robust error handling should be implemented at the controller level and
managed gracefully, providing meaningful errors, to not disrupt the application (Varanasi & Belida, 2015). We can
see this applied in Figure 18, where a user’s identity cannot be extracted and verified from their supplied JWT,
the application exits the method fittingly by providing a meaningful error message with an HTTP 400
BAD_REQUEST response, to be handled by the application (by simply returning displaying the error message
“User not found” returned then returning the user to the login screen).

Figure 18 - QuestController method to retrieve available quests from Spring Boot REST API

33

Current Stage of Work
Following all development stages, I have successfully addressed and met all of my project’s stated goals (from
Table 1, page 2). TM352 and other project-related studies have taught that the functional requirements derived
from project goals must be testable (Ten Attributes of a Testable Requirement 2020)– meaning they must be clear
and unambiguous– to ensure that they are met. These requirements are outlined in Table 11 on page 19.

At the end of project development, my application is largely as planned, adhering closely to the schedule as
outlined previously in this report. I maintained a flexibly structured approach, using my Scrum-like methodology
to ensure iterative progress was made across throughout all development phases.

Table 14

Goal Achieved By

(1) Create an Android application

The app was built using Java in Android Studio,
incorporating libraries like JUnit for testing and Glide for
efficient image loading and caching. Users engage with
historical content through physical, location-based quests.

(2) Model the core aspects of this software
project

Application objects (such as quests, objectives, and
artefacts) were successfully modelled using detailed
descriptions and associations, ensuring productive project
progression over time.

(3) Create hierarchical data structures to
collect, store and use quests, objectives and

artefacts.

The final system modelling work had been faithfully
implemented upon non-functional requirement changes
successfully.

(4) Allow in-app location tracking and proximity
detection.

In-app tracking was implemented using Google Maps API
and FusedLocationProvider for real-time location updates
based on user proximity to quest objectives.

(5) Provide a method of viewing collected
artefacts from completed quests

Implemented a UI component allowing users to view their
collected artefacts. Display of artefacts is accessible
through the main dashboard upon quest completion.

(6) Creation of a backend, allowing persistent
storage of user progress and application data
across compatible devices. Should also allow

transmission of data to users, for example
downloading new quests or images.

A Spring Boot backend was developed to handle user
data, progress, and quests, with JWT authentication for
secure login and data transfer. The backend interacts with
a MySQL database hosted in the cloud.

(7) Collect and use feedback from real users
when appropriate, then build upon it

User feedback from testing phases informed design
changes and user experience, leading to improvements in
navigation and user interface simplification.

(8) Ensure compliance with intellectual
property/copyright law and data privacy

regulations, due to user data usage, such as
feedback, account details and geolocation.

Only open-source fonts were used and all image assets
were generated by Dall-E, which denotes the user as the
legal image owner.

GDPR compliance was ensured through proper handling of
geolocation and user data. Data was encrypted where
needed, and sensitive information was stored securely.

(9) Collect user comments regarding mental
health outcomes, addressing the original

problem and the project as a solution to it.

Final feedback confirmed achievement of the project’s
ultimate aim (Appendix E)– a reduced desire to use social
media and positively impact users’ mental health. Users
reported feeling encouraged to do physical activity and
feeling intellectually stimulated.

34

As figures 19 and 20 show, functional
requirement FR1 was met through
providing an initial login and registration
interface, and an account amendment
activity once logged into a valid account
(auto-filled with the current user’s
account details name and email
address).

Figure 20 - On-screen confirmation of
account detail changes successfully
processed by the API

Figure 19 - Current app screenshots

depicting login and account editing activities

35

FR2, FR3 and FR4 were addressed by the main game function within Figure 21, which outlines how a user
can see a map of their surroundings and their position in it (reflected accurately). Step 1 in the image shows
what a user sees upon logging into the app. Step 2 shows the user accepting the offer to start the nearby
quest, while step 3 displays an objective’s completion dialog. Users can also navigate back to their current
map position if they scroll away from it (via the compass button at the top-right of the map).

Figure 21 - Screenshots showing the app’s main functions, accepting a quest and completing its objective when nearby.

36

Figure 22 shows my efforts to tackle FR5. Step 4’s screenshot was taken when the final objective in a quest
was reached. Upon approaching the location, another objective completion dialog is shown (like in 20, page
35).

Finally, a user’s obtained artefacts can be viewed from within a collection screen. As we can see, following
user feedback from Table 13 on page 27, the artefact icons are much smaller than in the initial design. This
takes up less screen-space and is more viewable. They can then be viewed in full-screen by tapping on them.

Figure 22 - Screenshots showing the app’s other main functions, obtaining an artefact upon quest completion and viewing
them later

37

Finally, below is evidence of FR6’s completion. Here we see HistoryHike running on two of my users’ devices:
a Google Pixel 3a XL (from 2019) and on a Samsung Z Flip 5 (from 2023). Both users reported that there were
no performance issues and therefore we can consider FR6 also addressed entirely.

38

Throughout the development of this project, I adhered to User-Centred Design (UCD) principles by actively
seeking feedback upon Sprint completion and integrating it into the next development cycle. This approach
ensured that user needs and preferences were considered throughout the project. By prioritising my users’
needs at every stage, I was able to understand their needs more closely and ensure that the final product
aligned as closely as possible with their expectations (Samrgandi, 2021) and provided a more satisfying user
experience overall. The ways that feedback was addressed has been discussed already, however Table 15
provides a quick reference to this evidence and more

Table 15

Feedback Conclusion Addressed? Evidence

Implement a clickable interface on quest items in this menu to take
the map to the quest’s starting location. ✓ Appendix F

Walk users through application functions, through performing
cognitive walkthroughs. ✓ Appendix D

Small icons for collected artefacts, with a full screen viewing
option. ✓ Figure 22, page 37

Display an artefact’s description when initially collected ✓ Figure 22, page 37

Allow easy navigation of the map back to users’ positions ✓ Figure 21, page 36

Objective proximity detection was increased to 10 metres- which
was originally set to 2 metres. ✓ Appendix G

With the above noted, however, not all non-functional requirements have been fully realised due to time
constraints. While I initially considered implementing AR-features for added engagement, feedback from users
suggested that it might not be worth the development time due to its minimal contribution to the core
experience of the app (Appendix C). Given time constraints and the need to focus on higher priority features, I
decided to postpone AR integration and focus on the more central aspects of my project. The ability to do this
lends itself to the flexibility of my Scrum-like approach to this project.

Also, while I researched image caching using Glide, I was unable to implement this feature within the available
time frame. Glide would have significantly improved the app's performance by reducing image loading times
and conserving data usage; however, without it, images are still fetched directly during runtime, meaning that
no functional requirement is impacted. Implementing caching remains a future goal to further optimise the
app's performance.

39

LSEPI
While developing this project, careful attention was given to the Legal, Social, Ethical, and Professional Issues
(LSEPI) to ensure compliance, professionalism, and inclusivity. Addressing these concerns not only protects
the app from legal consequences, it also ensures that it meets the needs of my user base while maintaining
ethical and professional standards. It is important to acknowledge both how these emergent LSEPI were
addressed throughout development, but also to explore how these must be considered post-EMA submission.

Table 16

Area Concern Mitigation Efforts Made Future Mitigation

Legal

User data
protection

(DPA & GDPR
Compliance)

User data, particularly account details, was
stored and processed securely using
industry best-practices (such as hashing,
salting and HTTPS encryption in-transit).

User locations are purposely never stored
or transmitted.

Feedback participants' details were also
anonymised in this study project.

Regularly perform audits of data
storage and privacy practices.

Allow users to further manage
their own data, such as providing
the ability to delete their account
and associated data, a legal
requirement in the UK (Right to
Erasure, no date).

Intellectual
Property

Infringement

Artefacts were legally distinct or based on
items which are in the public domain,
occurring 70 years after the creator’s
death (Copyright Notice: Duration of Copyright
Term, no date), such as Robert Burns'
Kilmarnock Edition.

Only free-use fonts and royalty-free image
assets were used in the app.

Continue ensuring all third-party
app assets and stories do not
violate copyright or intellectual
property laws.

Ethical Historical
accuracy

Historical content was verified using
multiple sources, including directly from
their sources.

Collaborate with historians or
experts to maintain accuracy.

Add in-app feedback loops.

Professional

Usability
Thoroughly tested all app components in
my development environment and on a
range of devices, by a number of users.

Implement in-app feedback loops
(Samrgandi, 2021) within the app
to highlight usability issues to
address them in future updates.

Accessibility
Made the app usable for disabled users,
through creating short-distance quests
with no extreme-elevation changes.

Implement screen reader
compatibility and adjustable font
sizes for visually impaired users.

Include audio-based quests to
support users with reading
disabilities.

Equality,
Diversity,

and
Inclusion

Diverse
Representation

Quests represented various communities,
e.g., Islamic history in Kilmarnock

Expand representation by
including more underrepresented
communities.

Inclusive
Rewards

Artefact rewards were sensitively selected
and do not exclude or persecute diverse
communities.

Consult with individuals from
different backgrounds to discuss
new rewards and content
possibilities without perpetuating
stereotypes or biases.

40

While mitigation efforts were taken to address immediate concerns, future steps outlined above must be
considered as the project evolves further. I acknowledge that, in my project’s current state, addressing
Equality, Diversity and Inclusion remain areas for much improvement. Looking forward, development must
maintain a focus on preserving data privacy, maintaining historical accuracy, enhancing accessibility, and
promoting inclusivity. Ongoing evaluation and user collaboration would remain essential in adapting to
challenges (new and existing), ensuring a compliant, ethical, and inclusive project as development continues.

41

Project Management Review

Developing an application of this magnitude, with a complex frontend and robust backend, presented
significant challenges throughout the project lifecycle. Performing the appropriate project management to
facilitate development was an equally demanding task. It was not just the technical complexity of the project
but also the difficulty of balancing development with personal commitments.

On a more personal note, the challenges of TM470 were exacerbated by life events. Earlier in the year, I was
involved in a car accident that impacted my ability to study for several months. Additionally, I was managing
two other level-three modules, each with their own rigorous demands. Alongside this, I started a graduate
software engineering role with a large multinational corporation, went on a (much-needed) holiday and became
engaged during this period. These major life events at such a pivotal time added another layer of complexity to
managing my time and focus, making the need for effective project management even more necessary.

In light of these challenges, a structured approach to planning and tracking progress became all the more
important to ensure I successfully completed this project. The tools and techniques employed through my
Scrum-like approach, such as task management systems and systematic progress tracking, played a crucial
role in accomplishing my study goals with TM470.

Project Management Tools

Figure 23 - Initial Gantt chart attempt

The first major challenge was scheduling my very limited time. Before any of my technical work began, I
experimented with Gantt charts as a visual way of representing my progression through project tasks- however
I quickly found that a simple tabular approach with development broken down into phases was a more suited
option to me. I found that the time taken to create and amend these charts, even just at the earliest of stages,
led to me wasting time. I also believe that, through manually updating a table with plain dates, I remained more
mindful of my tasks and deadlines than I would have otherwise. Overall, the time-cost outweighed any benefits
from the results of such work and therefore I deemed this tool un-necessary and distracting– opting for a more
simple approach as shown in Tables 7, 8, 9 & 10. I found this easier to plan development using my chosen
lifecycle model.

42

At the beginning of my project, I broke my development tasks progression into two-week chunks, called
Sprints. I used these as a means to review progress made in each two-week period and discuss the project
with my userbase. My Sprints were planned in such a manner that allowed for the creation of a Minimum
Viable Product, a meaningful deliverable asset that I could give to my users to comment on, as advised by
Agile (Rehkopf, no date) and UCD advocates alike. At the end of these Sprints, I made brief notes regarding
task completion and anticipation (Appendix H). This approach helped me maintain motivation and
concentration through such a long, complex project.

A key project management tool for me was Miro, an online Agile product backlog creation tool. I was able to
use this effectively to manage my project’s major tasks and subtasks from conception to completion. I found
that this Agile-focussed tool allowed me to implement my Scrum-like methodology exactly as intended. By
mapping a colour-coded, categorised list of individual tasks to an overall project schedule (as described on
pages 13 and 21), I was able to monitor progress to ease progression through my project.

Another critical tool used throughout the development of this project was Git. Without a form of version control,
the technical aspects of this project would have been exponentially harder to complete. Git allowed me to
maintain a clear and organised history of changes, enabling the safe implementation of new features without
risking the integrity of the existing codebase. This meant that I was able to work on individual features while
ensuring that any mistakes could be easily rolled back when necessary. This ensured the stability and
continuity of the application as it evolved.

Figure 24 - Backend-related Git commits

Project Resource Review

As part of developing this complex application, I researched and used a wide range of resources for managing
and undertaking development. Throughout the project, I relied on a combination of software tools and physical
devices to ensure both the technical feasibility and practical testing of the app's features.

In Table 17, page 43, I have reviewed the key resources employed in this project. Each resource was
evaluated based on its suitability for the project and its necessity. Any comments regarding these aspects are
also highlighted.

43

Table 17

 Resource Appropriate? Necessary? Comments

Software

Miro (Product Backlog) ✓ ✗
Useful for visualising tasks, but
simpler tools (paper or sticky
notes) could have sufficed.

Canva (UI prototyping
tool) ✓ ✗

Helpful for creating a visual
design, though basic prototyping
tools would have sufficed.

Git/GitHub ✓ ✓
Essential for version control and
tracking changes efficiently.

Cloud server ✓ ✗

Useful for reliable hosting, though
a more traditional or local server
would have sufficed. Had I not
already owned such a product, I
would have went a cheaper route.

Spring Boot ✓ ✓

Absolutely critical for building the
backend.While other frameworks I
researched would have met
requirements, I was able to hit the
ground running with a tool I was
familiar with and develop with less
learning required.

MySQL database ✓ ✓
Necessary to store and retrieve
data across multiple devices.

Android Studio ✓ ✓

The primary development
environment for the app. Crucial
for building and testing the app,
especially with JUnit integration.

JUnit ✓ ✓
Critical for testing app components
throughout development.

Google Maps API ✓ ✓
Required for displaying location
and providing necessary app
features.

FusedLocationProvider ✓ ✓
Needed for real-time, accurate
geolocation and proximity tracking
with fast development.

Physical

External stakeholders ✓ ✗

Not completely essential for
development, but very important
for gathering feedback and
improving the app.

Physical Android
devices ✓ ✓

Required to test geolocation and
proximity features in a real-world
environment.

44

Schedule Adherence

During early Daily Scrums, I realised that my original schedule was unsuitable. Agile approaches, like my
Scrum-like methodology, emphasise outputting a Minimum Viable Product frequently as often as possible
(Rehkopf, no date). I hadn't fully considered this at first. After reviewing my chosen literature, I decided to swap
two development phases entirely, focussing on delivering the project’s core app functions before developing a
backend. The fact that I was able to perform such a drastic change with minimal disruption to the overall
project outcome is testament to my chosen methodology’s suitability.

Throughout development, I found the granularity of my task-subtask schedule to provide appropriate flexibility
and meaningful milestones throughout my project’s progress. As I progressed through these, I have refined the
goals/aims of my project and the schedule to achieve them. I found that many tasks, such as “Implement Main
UI and Game Logic” could be completed faster (60% the estimated time), and some, such as “Deploy the
database in-cloud”, took longer (almost 3x as long, in fact). One which was a frequent, repeated obstacle was
my implementation of FusedLocationProvider, which ended up causing recurring issues throughout my project,
due to a lack of understanding of its edge cases . For example, when a user entered an area with poor GPS
signal and no mobile network, the FusedLocationProvider caused my app to crash (an issue that was resolved
by telling it to remember the last known location until a signal is regained).

These facts support my risk identification, specifically that of time underestimation and overestimating my
ability. Both of these risks compounded when I encountered difficulties in deploying my database in-cloud, a
problem which required discussions with my cloud provider’s customer service to resolve. My risk-mitigation
plans, however, sufficed in dealing with this problem, through addressing next steps throughout my daily
scrums. In these daily reflections, I was able to move onto different tasks based on my ongoing project
backlog.

I effectively researched required resources beforehand, managing the risk of "Low suitability for
tools/resources chosen" by selecting appropriate technologies with which to implement necessary features.
This also managed the "Underestimation of time needed to complete tasks or learn/improve skills" risk by
avoiding overly complicated tools early on. This risk was also avoided thanks to user feedback regarding the
lack of value in introducing AR-features, something which I’d planned from the start. This meant that my
Scrum-like methodology had merit, as it allowed me to refocus my efforts based on user comments,
embodying the Agile principle of “Responding to change over following a plan” and its aim to “...satisfy the
customer through early and continuous delivery of valuable software” (Lamborn, 2022). Through effective use of
my identified version-control resource, Git, I’ve successfully avoided any impact from my “Loss of work
undertaken” risk.

Regarding my development approach, I think that my Scrum-like methodology has served me well. Through
adopting this, I’ve reflected regularly as tasks have progressed (during daily scrums and at the end of sprints)
which has helped me keep on track and also retain motivation throughout the project’s development. This has
allowed me to re-assess my project’s aims and remove the proposed AR functionality, as discussed earlier,
something which may not have been possible with other methodologies (such as a typical waterfall approach).

45

Personal Development
My experience with TM470 was my first attempt at completing such an ambitious, multi-faceted project, and I
have found it tremendously valuable in developing my skills. Throughout this journey, I have handled the
various roles required to bring forth a highly complex software solution, including project management,
software development, and UX designer. This project has deepened my understanding of independent
learning, challenged my problem-solving abilities, and provided me to critically evaluate my work. Each phase
presented opportunities for growth, through adapting to challenges (such as life events) and new technologies
(like geolocation APIs and Android-platform development). while also learning to balance competing priorities
and unforeseen challenges.

A key area of growth was independent learning, especially as I encountered new tools and technologies that
were essential to the project. For example, learning true best-practices for a Spring Boot backend and
handling real-time geolocation through APIs were both steep learning curves. I was initially unfamiliar with
some of these technologies but, through research, online resources, iterative development and trial and error, I
developed a strong understanding of these concepts. I can now comfortably say that I am confident in
exploring a problem domain to discover appropriate tools. This independent learning experience has been
invaluable and I feel that it will certainly serve me well for future projects, both personally and professionally.

Undertaking this project has also significantly deepened my skills in both frontend and backend technologies–
with those I was already familiar with and otherwise. I gained hands-on, real-world experience with RESTful
APIs, JWT authentication, and MySQL database management. Implementing real-time geolocation using
FusedLocationProvider and integrating Google Maps API into the app were areas of particular difficulty at first,
but rewarding to implement. Additionally, I enhanced my skills in UI/UX design, where I iterated on feedback to
create a more user-friendly interface. These technical skills, particularly in mobile app development and
backend architecture, will surely also benefit my future software engineering projects.

Managing the project as a whole alongside other commitments was a significant challenge. I tracked my
progress through tools like Miro for backlog management and GitHub for version control. Despite these tools, I
occasionally had to adjust task prioritisation due to their complexity or external factors, which was testament to
my methodology’s suitability. I applied Scrum-like Sprints to break down the project into manageable tasks and
incorporated user feedback regularly at Sprint Reviews, which kept me Agile and kept my project relevant to
expectations. This was also my first time working under this lifecycle model, exposure to which has already
helped me in my Graduate Software Engineer role through providing comfort working under it. Through this, I
learned the dire importance of flexibility and prioritisation in project management

Finally, throughout the project, I continuously reviewed and improved upon my previous work. After each
Sprint, I conducted retrospective assessments to assess what went well and where improvements were
needed. For example, early feedback from users highlighted the need for a more intuitive and useful UI, which
led me to revise aspects of the interface. Additionally, I recognised the importance of better scope
management after deciding to drop certain features, such as Augmented Reality integration. This iterative
process of evaluation and refinement greatly enhanced the project outcome and reinforced the importance of
being adaptable.

46

Epilogue

Completing this project has been both an extremely challenging and rewarding journey. The overall objective
was to create an application that combines physical activity with local historical education to improve users’
mental well-being. I am very pleased to reflect that the project has successfully met all of its primary goals and
functional requirements, such as real-time geolocation, quest tracking, and an intuitive user interface.
Additionally, most non-functional requirements, like security and usability, were achieved, though some (such
as providing offline quest completion) remain areas to improve.

This project helped me grow in both technical and personal capacities. Despite the challenges I have faced, I
have successfully delivered a functional and meaningful solution that I can honestly say I am proud of. Moving
forward, I feel confident in my ability to further learn independently, manage complex projects, and critically
evaluate my work in an honest manner to ensure continuous improvement.

47

References
Copyright Notice: Duration of Copyright Term (no date) GOV.UK. Available at:
https://www.gov.uk/government/publications/copyright-notice-duration-of-copyright-term/copyright-notice-
duration-of-copyright-term (Accessed: 11 September 2024).

Dashwave (2023) Android architecture patterns - MVC, MVP, MVVM, MVI, Clean Architecture, Medium.
Available at:
https://medium.com/droidblogs/android-architecture-patterns-mvc-mvp-mvvm-mvi-clean-architecture-cde
8029b8f37 (Accessed: 11 September 2024).

Dovhal, M. (2023) Mapbox, OpenStreetMap or Google Map - supply your business with Top Mapping
API, SolidBrain. Available at:
https://solidbrain.net/blog/openstreetmap-api-vs-mapbox-vs-google-map-chose-your-map (Accessed: 25
September 2024).

Drumond, C. (no date) What is Scrum?, Atlassian. Available at: https://www.atlassian.com/agile/scrum
(Accessed: 11 September 2024).

Dutson, P. (2016) Android Development Patterns: Best practices for developers. O’Reilly.

Ergün, N., Özkan, Z. and Griffiths, M.D. (2023) ‘Social Media Addiction and Poor Mental Health:
Examining the mediating roles of internet addiction and phubbing’, Psychological Reports [Preprint].

Fused Location Provider API | Google For Developers (no date) Google. Available at:
https://developers.google.com/location-context/fused-location-provider (Accessed: 11 September 2024).

García, F.J.H. (2023) Java rest api frameworks - DZone. Available at:
https://dzone.com/articles/java-rest-api-frameworks-1 (Accessed: 11 September 2024).

Gazzah, R. (2020) MVI architecture with Android, Medium. Available at:
https://medium.com/swlh/mvi-architecture-with-android-fcde123e3c4a (Accessed: 11 September 2024).

Goldberg, S.B. et al. (2022) ‘Social Media Addiction and Poor Mental Health: Examining the mediating
roles of internet addiction and phubbing’, Psychological Reports [Preprint].

Harris, M.A. (2018) The relationship between physical inactivity and mental wellbeing: Findings from a
gamification-based community-wide physical activity intervention, PubMed Central. Available at:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774736/ (Accessed: 11 September 2024).

Health effects of staying at Home Too Much (no date) Vinmec International Hospital. Available at:
https://www.vinmec.com/eng/article/health-effects-of-staying-at-home-too-much-en (Accessed: 11
September 2024).

Hedegaard, H. (2018) U.S. Centres for Disease Control and Prevention. Available at:
https://www.cdc.gov/nchs/data/databriefs/db309.pdf (Accessed: 11 September 2024).

Humber , N. (2023) The health benefits of walking. Available at:
https://www.bupa.co.uk/newsroom/ourviews/walking-health (Accessed: 11 September 2024).

LocationManager | Android Developers (no date) Android Developers. Available at:
https://developer.android.com/reference/android/location/LocationManager (Accessed: 11 September
2024).

48

Lamborn, J. (2022) Agile explained: The 4 Agile Manifesto Values and 12 principles, LogRocket Blog.
Available at:
https://blog.logrocket.com/product-management/agile-manifesto-4-values-12-principles-explained
(Accessed: 11 September 2024).

Munusamy, B. (2023) Accessing User’s Location Guide Android 2023, Medium. Available at:
https://medium.com/@boobalaninfo/accessing-users-location-guide-android-2023-60a6f018a718
(Accessed: 11 September 2024).

Musgrave, Z. (2024) Quoting Differences Between Mysql and PostgreSQL, and Converting Between
Them, DoltHub Blog. Available at: https://www.dolthub.com/blog/2024-07-09-mysql-postgres-quoting/
(Accessed: 11 September 2024).

MVVM (Model View Viewmodel) architecture pattern in Android (2022) GeeksforGeeks. Available at:
https://www.geeksforgeeks.org/mvvm-model-view-viewmodel-architecture-pattern-in-android/ (Accessed:
11 September 2024).

PostgreSQL vs mysql - difference between relational database management systems (RDBMS) - AWS
(no date) AWS Documentation. Available at:
https://aws.amazon.com/compare/the-difference-between-mysql-vs-postgresql/ (Accessed: 23
September 2024).

Rehkopf, M. (no date) Scrum sprints: Everything you need to know, Atlassian. Available at:
https://www.atlassian.com/agile/scrum/sprints (Accessed: 11 September 2024).

Samrgandi, N. (2021) User Interface Design & Evaluation of Mobile Applications, ResearchGate.
Available at:
https://www.researchgate.net/publication/349087972_User_Interface_Design_Evaluation_of_Mobile_Ap
plications (Accessed: 11 September 2024).

Varanasi, B. and Belida, S. (2015) Spring Rest. Apress.

What is Information Security: Policy, Principles & Threats: Imperva (no date) Imperva. Available at:
https://www.imperva.com/learn/data-security/information-security-infosec/ (Accessed: 11 September
2024).

Yasas, R. (2022) Spring Boot Best Practices for developers, Medium. Available at:
https://medium.com/@raviyasas/spring-boot-best-practices-for-developers-3f3bdffa0090 (Accessed: 11
September 2024).

49

Appendices
Appendix A:
A visual, approximate representation of my discussion with users, to craft user stories and elicit requirements.

​​

50

Appendix B:
The form which my users have signed and dated to provide consent for participation in this project.

Appendix C:
A visual, approximate representation of a discussion with users early in the development process, whereby the
project’s scope was narrowed following constructive feedback.

51

Appendix D:
A visual representation of the cognitive walkthrough performed with my userbase to acquaint them to my app’s
features.

52

Appendix E:
The final comments regarding the outcome of HistoryHike usage.

Feedback Area Positive Comments Constructive Feedback

Encouragement to
Exercise

Helped me stay active regularly. Notifications/reminders to take part in quests
would be useful, to encourage further.

Learning while exercising was a
unique approach which I enjoyed

The quests could be more varied in length to
fit different time slots.

Knowledge of
Local History

I learned interesting facts about
the history of my surroundings.

Some historical quests were too brief and I
wanted to continue them.

Mental Health
Impact

I felt grounded through learning
about my own surroundings.

More quests with more variance would
enhance this feeling. Currently there are not
enough quests to keep me coming back.

I felt less of a desire to partake in
unhealthy screen habits (social
media, for example) during and
after HistoryHike use.

I still use social media too much outside of
HistoryHike usage. Again, notifications would
be helpful to encourage habit replacement
further.

I felt a sense of achievement after
completing a quest.

While it did help with my exercise routine, I'm
unsure of its long-term mental health benefits.

I felt satisfied that I had made
progress when viewing my
collected artefacts.

Integration of other mental health features
would be useful.

User Interface Easy to navigate all aspects of the
app.

It could be more visually engaging, especially
the artefact display.

53

Appendix F:
A screenshot evidencing the implementation of the requested functionality for a user’s map to centre on the
next objective within a quest when it is tapped from the current objective list. Step 1 shows the user’s location,
Step 2 shows the objectives list and Step 3 shows what the user then sees after clicking the upcoming (bold)
objective.

54

Appendix G:
The Git commit where Geolocation distance was increased five-fold.

Appendix H:
An example of my Sprint notes, which were maintained throughout the project.

55

	Problem Description
	Goals

	Account of Related Literature
	Account of Project Work and Its Outcome
	Project Planning
	Software Project Lifecycle Model Selection
	Software Design Pattern
	Resource Research
	Resources Used
	Project Completion Risks
	
	Major Tasks and Subtasks, With Schedule
	User Stories
	Requirement Elicitation
	Functional Requirements
	Non-functional Requirements

	Product Backlog
	System Modelling
	Analysis Model
	State Diagrams

	User Interface Design

	Project Development
	MVC Implementation
	Unit Testing
	Initial Testing On Real Device (Game Logic)
	Backend
	Database
	REST API

	Current Stage of Work
	LSEPI

	Project Management Review
	Project Management Tools
	Project Resource Review
	Schedule Adherence

	Personal Development
	Epilogue
	References
	Appendices

